Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа № 2 имени И.М.Еганова» муниципального образования — городской округ город Скопин Рязанской области 391803, Рязанская область, г. Скопин, ул. К. Маркса, д.90 т. 2-01-49

E-mail: post@school2skopin.ru

директор МБОУ «COL	Ш №2 им	УТВЕРЖДАЮ нени И.М. Еганова»
Приказ №	233	Е.А. Иванова от 31.08. 2022г.

Дополнительная общеразвивающая программа естественнонаучной направленности

«Решение экспериментальных и комбинированных задач по физике в рамках проекта «Точка роста»»

(с использованием оборудования центра «Точка Роста»)

Программа предназначена для детей 13-16 лет (7-9 класс) Срок реализации: 3 года

Составитель программы: Матюшина Ю.Н.

СОДЕРЖАНИЕ

Раздел 1. Основные характеристики дополнительной общеразвивающей программы

- 1.1. Пояснительная записка
- -направленность
- -актуальность
- -новизна
- -отличительные особенности программы
- -педагогическая целесообразность
- -возраст и сроки реализации программы
- -форма обучения
 - 1.2. Цель и задачи программы

Раздел 2. Содержание Программы

- 2.1. Учебный (тематический) план
- 2.2. Календарный учебный график
- 2.3. Содержание программы (с тематическим планированием)
- 2.4. Планируемые результаты
- 2.5. Формы и виды контроля

Раздел 3. Организационно-педагогические условия

- -условия реализации
- -материально-технические
- -кадровые
- -информационно-методические

Раздел 1. Основные характеристики дополнительной общеразвивающей программы

1.1. Пояснительная записка

Дополнительная общеразвивающая программа естественнонаучной направленности «Решение экспериментальных и комбинированных задач по физике в рамках проекта «Точка роста»» разработана в соответствии с Федеральным законом от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации», приказом Министерства образования и науки РФ от 09.11.2018 № 196 «Об утверждении организации и осуществления образовательной деятельности дополнительным общеобразовательным программам», а также в соответствии с требованиями к устройству, содержанию и санитарно-эпидемиологическими работы организации режима образовательных организаций, реализующих дополнительные общеобразовательные программы.

Освоение ее содержания способствует формированию научных представлений у обучающихся на основе изучения процессов и явлений, происходящих в природе. Это существенно влияет на развитие интеллектуальных и творческих способностей личности ребенка.

Актуальность программы

Физика органично входит в громадное число современных специальностей. Таким образом, проведение с учащимися лекционно-семинарских занятий, их квалифицированное консультирование и развитие в них склонности к поиску нестандартных решений с учетом интересов учащихся является крайне необходимым.

Социальные и экономические условия в быстро меняющемся современноммире требуют, чтобы нынешние ученики получили целостное компетентностное образование. Успешное формирование компетенций может происходить только в личностно-ориентированном образовательном процессе на основе личностно-деятельностного подхода, когда ребёнок выступает как субъект деятельности, субъект развития.

Создание программы вызвано потребностью методического и нормативного обеспечения курса физики в системе дополнительного образования и необходимостью решения проблем воспитания детей новыми средствами, а также повышения качества и значимости дополнительного образования.

Новизна программы

Новизна данной программы заключается в «погружении» в мир физики. Создаются условия для развития мотивированных детей, включая детей, чьи успехи в физике в настоящий момент может, еще не проявились. Проводится работа с перспективными детьми, отношении которых есть серьезная надежда на дальнейший качественный скачок в развитии их способностей.

Отличительные особенности программы

Отличительная особенность дополнительной общеразвивающей программы «Решение экспериментальных и комбинированных задач по физике в рамках проекта «Точка роста»» от уже существующих образовательных программ — нестандартный подход к отбору материала, используемого на занятиях лабораторных работ и демонстрационных приборов.

Комплексный подход преподавания данной программы способствует углублению знаний и гармоническому развитию личности ребенка. Программа дополнительного образования рассчитана на учащихся 7-9 классов, обладающих определенным багажом знаний, умений и навыков, полученных на уроках физики. Занятия способствуют развитию и поддержке интереса учащихся к деятельности определенного направления, дает возможность расширить и углубить знания и умения, полученные в процессе учебы, и создает условия для все стороннего развития личности. Занятия являются источником мотивации учебной деятельности учащихся, дают им глубокий эмоциональный заряд.

Дополнительная общеразвивающая программа естественнонаучной направленности «Решение экспериментальных и комбинированных задач по физике в рамках проекта «Точка роста»» представляет собой 3-х годичный цикл отдельных модулей, предназначенных для учащихся определенного возраста (Модуль 1 «Введение в физику», возраст учащихся 7 классы; Модуль 2 «Физические задачи», возраст учащихся 8 классы; Модуль 3 «Подготовка к ОГЭ», возраст учащихся 9 классы). Предусмотрена возможность изучения программного материала с любого курса в соответствии с возрастом учащихся, т.е. без учета ранее не пройденных курсов. Содержание модуля для каждого возраста имеет завершенный характер, предполагает достижение планируемых результатов. В каждом модуле программы предусмотрен дифференцированный подход в обучении (стартовый, базовый и продвинутый уровни).

- «Стартовый уровень». Предполагает минимальную сложность изучаемого материала. В основном освоение теоретического материала.
- «Базовый уровень». Помимо освоения теоретического материала, предполагает владение навыками решения простых экспериментальных и комбинированных задач с применением основных формул и законов.
- «Продвинутый уровень». Предполагает свободное владение теоретическим материалом, навыками решения комбинированных задач с применением анализа и синтеза, умение объяснять происходящие процессы в повседневной жизни. Обучение направлено на повышение функциональной грамотности обучающихся, а также на углубленное изучение материала.

Педагогическая целесообразность

Воспитание творческой активности учащихся в процессе изучения ими физики является одной из актуальных задач, стоящих перед учителями физики в современной школе. Основными средствами такого воспитания и развития способностей учащихся являются экспериментальные исследования и задачи. Умением решать задачи характеризуется в первую очередь состояние подготовки учащихся, глубина усвоения учебного материала.

Решение нестандартных задач и проведение занимательных экспериментальных заданий способствует пробуждению и развитию у них устойчивого интереса к физике. Данное направление работы имеет широкие возможности для проектной деятельности.

Занятия помогут выработать обучающимся понятийный аппарат о природе физических явлений. В зависимости от года обучения материал систематизируется, расширяется и усложняется. Одним из направлений работы курса является подготовка обучающихся к итоговой аттестации за курс основной школы по предмету физика. Форма работы курса позволяет ребятам приобрести уверенность в своих знаниях через повышение функциональной грамотности, что существенно улучшает эмоциональное и психологическое состояние подростков.

Возрастной уровень обучающихся: 13-16 лет (7-9 классы).

Срок реализации: 3 года.

Форма обучения: Форма занятий — очная, очная с применением дистанционных образовательных технологий и электронного обучения.

Количество детей в группе: 15-20 человек. В группу принимаются все желающие.

Общее количество часов в год: 34 часа.

Режим занятий: занятия проводятся согласно утвержденному расписанию образовательной организации. Периодичность проведения занятий - 1 раза в неделю по1 академическому часу (1 академический час – 45 минут).

Формы занятий: беседа, лекция, практикум, работа с тестами, игра «Что? Где? Когда?», проектная работа, лабораторные работы.

Виды деятельности: решение разных типов задач, занимательные опыты по разным разделам физики, применение ИКТ, занимательные экскурсии в область истории физики, применение физики в практической жизни.

1.2. Цель и задачи Программы Цели:

- создание условий для развития творческого мышления обучающихся, умений самостоятельно применять и пополнять свои знания через решение практических задач;
- развитие интереса и творческих способностей школьников при освоении ими метода научного познания;
- приобретение учащимися знаний и чувственного опыта для понимания явлений природы;
- формирование представлений об изменчивости и познаваемости мира, в котором мы живем.

Достижение этих целей обеспечивается решением следующих задач:

- формировать умение работать в группе, вести дискуссию, отстаивать свою точку зрения;
- познакомить учащихся с методом научного познания и методами исследования объектов и явлений природы (наблюдение, опыт, выявление закономерностей, моделирование явления, формулировка гипотез и постановка задач по их проверке, поиск решения задач, подведение итогов и формулировка вывода);
- формировать у учащихся знания о механических, тепловых, электрических, магнитных и световых явлениях, физических величинах, характеризующих эти явления;
- формировать у учащихся умения наблюдать и описывать явления окружающего мира в их взаимосвязи с другими явлениями, выявлять главное, обнаруживать закономерности в протекании явлений и качественно объяснять наиболее распространенные и значимые для человека явления природы;
- дать учащимся представление о методах физического экспериментального исследования как важнейшей части методологии физики, способствовать развитию интереса к исследовательской деятельности;
- способствовать овладению общенаучными понятиями: природное явление, эмпирически установленный факт, проблема, гипотеза, теоретический вывод, результат экспериментальной проверки;
- способствовать пониманию отличия научных данных от непроверенной информации, ценности науки для удовлетворения бытовых, производственныхи культурных потребностей человека.

Раздел 2. Содержание Программы

2.1. Учебный (тематический) план

Модуль 1 «Введение в физику» (7 класс)

	Ко	личество ча	сов	Формы контроля
Содержание разделов	Всего	Теория	Практика	Формы контроля
Научные методы познания	3	1	2	Лабораторная работа. Создание тематических занимательных материалов по профилю.
Учимся изготовлять простейшие приборы и модели	4	2	2	Лабораторная работа. Создание тематических занимательных материалов по профилю.
Учимся измерять	5	3	2	Лабораторная работа. Создание тематических занимательных материалов по профилю.
Учимся моделировать, выдвигать гипотезы, наблюдать и объяснять явления	4	2	2	Лабораторная работа. Тестовая работа. Создание тематических

Vulvag votohopiupoti	6	3	3	занимательных материалов по профилю.
Учимся устанавливать зависимости	0	3	3	Лабораторная работа. Создание тематических занимательных материалов по профилю.
Выявляем закономерности	6	2	4	Лабораторная работа. Создание тематических занимательных материалов по профилю.
Занимательные опыты по физике	6	4	2	Лабораторная работа. Защита творческих проектов.
Итого	34	17	17	

Модуль 2 «Физические задачи» (8 класс)

	Ко	личество ча	СОВ	
Содержание разделов	Всего	Теория	Практика	Формы контроля
Тепловые явления	10	6	4	Лабораторная работа. Создание тематических занимательных материалов по профилю.
Электромагнитные явления	12	8	4	Лабораторная работа. Создание тематических занимательных материалов по профилю.
Световые явления	6	4	2	Лабораторная работа.

			Создание
			тематических
			занимательных
			материалов по
			профилю.
6	2	4	Защита
			творческого проекта.
34	20	14	
		0 2	2 4

Модуль 3 «Подготовка к ОГЭ» (9 класс)

	Ко	личество ча	сов	
Содержание разде- лов	Всего	Теория	Практика	Формы контроля
Законы взаимодей- ствия и движения тел	5	3	2	Лабораторная работа. Создание тематических занимательных материалов по профилю.
Колебания и волны	2	1	1	Лабораторная работа. Создание тематических занимательных материалов по профилю.
Элементы гидростатики и аэростатики	5	3	2	Лабораторная работа. Создание тематических занимательных материалов по профилю.
Электрические явления	6	3	3	Лабораторная работа. Создание тематических занимательных материалов по профилю.

Электромагнитное поле. Электромагнитные волны	6	2	2	Лабораторная работа. Создание тематических занимательных материалов по профилю.
Строение атома и атомного ядра	2	1	1	Лабораторная работа. Тестовые задания.
Решение задач практической направленности	6	2	4	Лабораторная работа. Решение задач.
Разбор олимпиадных заданий	2	1	1	Лабораторная работа. Создание тематических занимательных материалов по профилю.
Итого	34	16	18	Защита творческого проектов.

2.2. Календарный учебный график

Начало занятий	3 сентября 2022 года
Окончание занятий	27 мая 2023 года
Продолжительность учебного года	34 недели
Форма обучения	очная
Формы организации занятий	групповые занятия
Количество детей в группе	15-20 учащихся
Продолжительность занятий	1 учебное занятие - 45 минут
Промежуточная аттестация	29 апреля 2023 года

2.3. Содержание Программы

Модуль 1 «Введение в физику» (7 класс)

Научные методы познания (3 занятия)

Что изучает физика. Методы научного познания: наблюдение, эксперимент. Методы теоретического познания: измерения, сравнения, анализ явлений, синтезирование (обобщение) фактов, установление причинно-следственных связей. Физические величины и их измерения. Измерительные приборы. Математическая запись больших и малых величин.

<u>Демонстрации:</u>

- 1. Механические, тепловые, электромагнитные, звуковые и световые явления.
- 2. Различные измерительные приборы.

Лабораторные работы:

1. Определение цены деления различных измерительных приборов.

Учимся изготовлять простейшие приборы и модели (4 занятия) Измерительные приборы. Цена деления измерительного прибора.

<u> Демонстрации:</u>

- 1. Меры длины: метр, дециметр, сантиметр.
- 2. Мерный цилиндр (мензурка).
- 3. Измерение углов при помощи транспортира.
- 4. Ориентация на местности при помощи компаса.
- 5. Измерение площадей различных фигур.
- 6. Измерение пульса, давления.

Лабораторные работы:

- 1. Изготовление масштабной линейки длиной 1 метр из плотной бумаги с делениями на дециметры, причём первый дециметр разделить на сантиметры и миллиметры.
- 2. Изготовление кубического сантиметра из мела, глины, дерева, резины или другого материала.
- 3. Изготовление и градуирование мензурки.

Учимся измерять (5 занятий)

Цена деления измерительного прибора. Точность измерений. Абсолютная и относительная погрешность.

Демонстрации:

1. Измерение масштабной линейкой длины карандаша.

Лабораторные работы:

- 1. Измерение объёма тела правильной формы (детского кубика, коробки, карандаша).
- 2. Определение вместимости сосудов различной ёмкости (флакона из-под шампуня, кастрюли, вазы).
- 3. Измерение объёма твёрдого тела неправильной формы (картофелины, гайки, пластмассовой игрушки).
- 4. Лабораторная работа «Измерение толщины тетрадного листа».

Учимся моделировать, выдвигать гипотезы, наблюдать и объяснять явления (4 занятия)

Первоначальные сведения о строении вещества. Молекулы. Взаимодействие молекул. Диффузия.

Демонстрации:

- 1. Модели кристаллических решёток различных химических веществ.
- 2. Модель броуновского движения.
- 3. Демонстрация явления смачивания.

Лабораторные работы:

- 1. Изготовление моделей молекул воды, водорода, кислорода.
- 2. Выяснение условий протекания диффузии.
- 3. Определение времени прохождения диффузии.

Учимся устанавливать зависимости (6 занятий)

Механическое движение и его характеристики. Виды движения. Траектория и путь. Система отсчёта. Взаимодействие тел. Масса. Плотность.

Демонстрации:

- 1. Принцип действия отвеса.
- 2. Определение массы тела с помощью рычажных весов.

Лабораторные работы:

- 1. Определение скорости равномерного движения.
- 2. Определение средней скорости неравномерного прямолинейного движения.
- 3. Определение плотности предметов домашнего обихода.
- 4. Определение плотности воды, растительного масла, молока.

Выявляем закономерности (6 занятий)

Вес тела. Сила трения. Сила тяжести. Действие на тело нескольких сил.

Демонстрации:

1. Динамометр. Измерение силы с помощью динамометра.

<u>Лабораторные работы:</u>

- 1. Обнаружение и измерение веса тела.
- 2. Изучение зависимости силы трения скольжения от рода трущихся поверхностей.

Занимательные опыты по физике (6 занятия)

Методика проведения опытов в домашних условиях. Анкетирование учащихся «Насколько понравилось вам работать в кружке?»

Демонстрации: занимательные опыты, опыты в домашних условиях.

Модуль 2 «Физические задачи» (8 класс)

Тепловые явления (10 занятий)

Температура. Связь температуры с хаотическим движением частиц. Термометр. Теплопередача: теплопроводность, конвекция, излучение.

Погода и климат. Влажность воздуха. Образование ветров. Гидростатика.

Лабораторные работы:

- 1. Исследование изменения со временем температуры остывающей воды.
- 2. Определение влажности с помощью психрометрического гигрометра.
- 3. Определение цены деления приборов, измерение массы и объёма тел неправильной формы.

Электромагнитные явления (12 занятий)

Электризация тел. Электрический заряд. Взаимодействие зарядов. Два вида электрического заряда. Электрон. Строение атома. Ион.

Электрический ток. Источники электрического тока. Электрическая цепь. Проводники и изоляторы. Действия электрического тока.

Преобразование энергии при нагревании проводника с электрическим током. Электричество в быту. Производство электроэнергии. Меры предосторожности при работе с электрическим током. Природное электричество.

Взаимодействие магнитов. Электромагнитные явления. Применение электромагнитов.

Проводники с током в магнитном поле. Правило левой руки.

<u>Демонстрации:</u>

- 1. Электризация различных тел.
- 2. Взаимодействие наэлектризованных тел. Два рода зарядов.
- 3. Определение заряда наэлектризованного тела.
- 4. Составление электрической цепи.
- 5. Нагревание проводников током.
- 6. Взаимодействие постоянных магнитов.
- 7. Расположение магнитных стрелок вокруг прямого проводника и катушки с током.

Лабораторные работы:

- 1. Электризация различных тел и изучение их взаимодействия.
- 2. Сборка электрической цепи. Наблюдение действий электрического тока.
- 3. Изучение взаимодействия магнитов. Определение полюса немаркированного магнита.
- 4. Сборка электромагнита и изучение его характеристик.

Световые явления (6 занятий)

Прямолинейное распространение света. Луч. Образование тени. Лунные и солнечные затмения. Отражение света. Закон отражения света. Зеркала плоские, выпуклые и вогнутые. Преломление света. Линза. Способность видеть. Дефекты зрения. Очки. Фотоаппарат. Цвета. Смешивание цветов.

<u> Демонстрации:</u>

- 1. Прямолинейное распространение света.
- 2. Образование тени и полутени.
- 3. Отражение света.
- 4. Законы отражения света.
- 5. Изображение в плоском зеркале.
- 6. Преломление света.
- 7. Разложение белого света в спектр.
- 8. Ход лучей в линзах.
- 9. Получение изображений с помощью линз.

Лабораторные работы:

- 1. Проверка закона отражения света.
- 2. Наблюдение преломления света.

Решение олимпиадных заданий. (6 занятий)

Модуль 3 «Подготовка к ОГЭ» (9 класс)

Законы взаимодействия и движения тел (5 занятий)

Механическое движение, относительность движения, система отсчета. Траектория, путь и перемещение. Закон сложения скоростей. Графики зависимости кинематических величин от времени при равномерном и равнопеременном движении. Движение тела под действием силы тяжести по вертикали. Баллистическое движение. Законы Ньютона. Инерциальная система отсчета. Масса. Сила. Сложение сил. Закон всемирного тяготения. Сила тяжести, ускорение свободного падения. Силы упругости, закон Гука. Вес тела, невесомость. Силы трения, коэффициент трения скольжения.

Колебания и волны (2 занятия)

Механические колебания. Зависимость периода колебаний груза на пружине от массы груза. Зависимость периода колебаний нитяного маятника от длины нити. Превращение энергии при механических колебаниях. Механические волны.

Элементы гидростатики и аэростатики (5 занятий)

Давление жидкости и газов. Закон Паскаля. Закон сообщающихся сосудов. Сила Архимеда. Условия плавания тел.

Электрические явления (6 занятий)

Закон Кулона. Закон сохранения электрического заряда. Электрический ток. Величины, характеризующие электрический ток. Условные обозначения элементов электрических цепей. Построение электрических цепей. Закон Ома. Расчет сопротивления проводников. Законы последовательного и параллельного соединений. Работа и мощность электрического тока. Закон Джоуля-Ленца.

Электромагнитное поле. Электромагнитные волны (6 занятий)

Направление тока и направление линий его магнитного поля. Правило буравчика. Обнаружение магнитного поля. Правило левой руки. Индукция магнитного поля. Магнитный поток. Электромагнитная индукция. Электромагнитные волны. Скорость распространения электромагнитных волн. Электромагнитнаяприрода света. Оптика.

Строение атома и атомного ядра (2 занятия)

Ядерная модель атома. Радиоактивные превращения атомных ядер. Протоннонейтронная модель ядра. Зарядовое и массовое числа. Ядерные реакции. Деление и синтез ядер. Сохранение зарядового и массового чисел при ядерных реакциях.

Решение задач практической направленности (6 занятий)

Решение задач практической направленности (2 занятия)

При изучении каждой темы предусмотрены лабораторные работы, разбор заданий повышенного и высокого уровня, олимпиадных заданий.

2.4. Тематическое планирование

Модуль 1 «Введение в физику» (7 класс)

№ п/п	Тема занятия	Кол-во часов
	Научные методы познания (3 занятия)	
1	Что изучает физика. Методы научного и теоретического познания.	1
2	Физические величины и их измерение. Измерительные приборы.	1
3	Лабораторная работа «Определение цены деления различных измерительных приборов».	1
Учи	мся изготовлять простейшие приборы и модели (4 занят	ия)
4	Измерительные приборы и использование их в жизни человека.	1
5	Лабораторная работа «Изготовление масштабной линейки».	1
6	Лабораторная работа «Изготовление кубического сантиметра».	1
7	Лабораторная работа «Изготовление и градуирование мензурки».	1
	Учимся измерять (5 занятий)	
8	Точность измерений. Абсолютная и относительная погрешность.	1
9	Лабораторная работа «Измерение объёма тела правильной формы».	1
10	Лабораторная работа «Измерение объёма твёрдого тела неправильной формы».	1
11	Лабораторная работа «Определение вместимости сосудов различной ёмкости».	1
12	Лабораторная работа «Измерение толщины тетрадного листа».	1
Учим	ся моделировать, выдвигать гипотезы, наблюдать и объя- явления	снять
	(4 занятия)	
13	Первоначальные сведения о строении вещества. Молекулы. Лабораторная работа «Изготовление моделей молекул воды, водорода, кислорода».	1
14	Движение молекул. Диффузия. Взаимодействие молекул. Явление смачивания. Лабораторная работа «Выяснение условий протекания диффузии».	1

15	Лабораторная работа «Определение времени прохождения диффузии».	1
4 -	Психотехническая игра «Агрегатные состояния вещества».	1
16	Tremo temm reckest in pa will perurible economist beinger but.	1
	Учимся устанавливать зависимости (6 занятий)	
17	Механическое движение и его характеристики. Виды	1
1 /	движений.	
18	Лабораторная работа «Определение скорости	1
	равномерного движения».	
19	Лабораторная работа «Определение средней скорости не-	1
17	равномерного прямолинейного движения».	
20	Масса. Плотность.	1
21	Лабораторная работа «Определение плотности предметов	1
21	домашнего обихода».	
22	Лабораторная работа «Определение плотности воды,	1
22	растительного масла, молока».	
	Выясняем закономерности (6 занятий)	
23	Сила. Вес тела.	1
24	Лабораторная работа «Обнаружение и измерение веса	1
24	тела».	
25-26	Сила трения. Действие на тело нескольких сил.	2
27	Лабораторная работа «Изучение силы трения скольжения	1
21	от рода трущихся поверхностей».	
28	Терминологическая игра «Путь прокладывает логика».	1
	Занимательные опыты по физике (6 занятий)	
29-30	Весёлые опыты в домашних условиях.	2
31-32	Защита проектов по выбранным темам.	2
33-34	Зачетная работа в форме теста	2

Модуль 2 «Физические задачи» (8 класс)

№	Тема занятия	Кол-во
п/п		часов
	Тепловые явления (10 занятий)	
1	Температура. Связь температуры с хаотическим движением частиц.	1
2	Термометр. Теплопередача: теплопроводность, конвекция, излучение. Л/р «Исследование изменения со временем температуры остывающей воды.»	1
3	Погода и климат. Влажность воздуха. Образование ветров. Л/р №2 «Определение влажности с помощью психрометрического гигрометра»	1
4	Гидростатика	1

5	Л/р №3 «Определение цены деления приборов, измерение	1
	массы и объёма тел неправильной формы.»	
6	Гидростатика	1
	Давление жидкостей и газов. Пневматические тормоза	
7	Гидростатика	1
	Решение задач	
8	Гидростатика	1
	Проверочный тест. Гидростатика в промышленности	
9	Решение задач повышенного и высокого уровня сложности	1
10	Решение задач повышенного и высокого уровня сложности	1
	Электромагнитные явления (12 занятий)	
11	Электризация тел. Электрический заряд. Взаимодействие за-	1
	рядов. Два вида электрического заряда. Электрон.	
	Л/р №4 «Электризация различных тел и изучение их взаимо-	
	действия.»	
12	Строение атома. Ион.	1
13	Электрический ток. Источники электрического тока.	1
	Электрическая цепь. Проводники и изоляторы. Действия	
	электрического тока.	
	Л/р №5 «Сборка электрической цепи. Наблюдение действий	
	электрического тока.»	
	Л/р №6 «. Нагревание проводников током»	
14	Электричество в быту. Производство электроэнергии. Меры	1
	предосторожности при работе с электрическим током. При-	
	родное электричество.	
15	Взаимодействие магнитов. Электромагнитные явления.	1
	Применение электромагнитов.	
	Л/р №7 «Изучение взаимодействия магнитов.	
1.0	Определение полюса немаркированного магнита.»	1
16	Проводники с током в магнитном поле. Правило левой руки	1
17	Решение задач на применение правила левой руки	1
18	Решение задач на применение правила правой руки и	1
	«буравчика» руки	
19	Л/р № 8 «Сборка электромагнита и изучение его	1
	характеристик»	
20-21	Электромагнитная индукция	2
	Наблюдение явления электромагнитной индукции.	
	Установить зависимость силы индукционного тока то	
	полюсов магнита и скорости его движения	
22	Опыты Фарадей	1
	Применение индукционных генераторов. Устройство и	
		1

	Световые явления (6 занятий)	
23-24	Прямолинейное распространение света. Луч. Образование	2
	тени. Лунные и солнечные затмения	
25-26	Преломление света. Линза. Способность видеть. Дефекты	2
	зрения. Очки. Фотоаппарат. Цвета.	
27-28	Построение в рассеивающих линзах	2
	Решение олимпиадных заданий (6 занятий)	
29-30	Решение олимпиадных заданий.	2
31-32	Решение олимпиадных заданий.	2
33-34	Зачетная работа в форме теста	2

Модуль 3 «Подготовка к ОГЭ» (9 класс)

№ п/п	№ п/п Тема занятий			
	Законы взаимодействия и движения тел (5 занятий)	часов		
1	Механическое движение, относительность движения,	1		
	система отсчета. Траектория, путь и перемещение. Закон сложения скоростей. Практическая работа			
2	Графики зависимости кинематических величин от	1		
_	времени при равномерном и равнопеременном движении.			
3	Движение тела под действием силы тяжести по вертикали. Баллистическое движение	1		
4	Законы Ньютона. Инерциальная система отсчета. Масса. Сила. Сложение сил	1		
5	Сила тяжести, ускорение свободного падения. Силы	1		
	упругости, закон Гука. Вес тела, невесомость. Силы			
	трения.			
	Л/р №1 №Определение коэффициента трения»			
	Колебания и волны (2 занятия)			
6	Механические колебания. Л/р №3 «Зависимость периода	1		
	колебаний груза на пружине от массы груза». Л/р №2			
	«Зависимость периода колебаний нитяного маятника от			
	длины нити.»			
7	Превращение энергии при механических колебаниях. Механические волны.	1		
	Элементы гидростатики и аэростатики (5 занятий)			
8	Давление жидкости и газов. Закон Паскаля. Закон	1		
	сообщающихся сосудов.			
9	Сила Архимеда. Условия плавания тел.	1		
10	Тепловые явления.	1		
11	Внутренняя энергия. Количество теплоты. Уравнение теплового баланса.	1		

12	Коэффициент полезного действия, тепловых двигателей.	1
	Влажность воздуха.	
	Электрические явления (6 занятий)	
13	Электрический ток. Величины, характеризующие	1
	электрический ток.	
14	Закон Кулона. Закон сохранения электрического заряда.	1
15	Условные обозначения элементов электрических цепей.	1
	Сборка электрических цепей.	
16	Закон Ома. Расчет сопротивления проводников. Законы	1
	последовательного и параллельного соединений.	
17-18	Работа и мощность электрического тока. Закон Джоуля-	2
	Ленца.	
	Электромагнитное поле. Электромагнитные волны	
	(6 занятий)	
19-20	Направление тока и направление линий его магнитного	2
	поля. Правило буравчика. Обнаружение магнитного	
	поля. Правило левой руки. Индукция магнитного поля.	
21	Магнитный поток. Электромагнитная индукция.	1
22	Магнитный поток. Электромагнитная индукция.	1
23-24	Электромагнитная природа света. Оптика.	2
	Строение атома и атомного ядра (2 занятия)	
25	Ядерная модель атома. Радиоактивные превращения	1
	атомных ядер. Протонно-нейтронная модель ядра.	
	Зарядовое и массовое числа	
26	Ядерные реакции. Деление и синтез ядер. Сохранение	1
	зарядового и массового чисел при ядерных реакциях.	
	Решение задач практической направленности	
	(6 занятий)	
27-28	Решение задач практической направленности.	2
29-30	Решение задач практической направленности.	2
31-32	Решение задач практической направленности.	2
	Решение задач высокого уровня (2 занятия)	
33-34	Зачетная работа в форме теста.	2

2.5. Планируемые результаты

Данный курс «Решение экспериментальных и комбинированных задач по физике в рамках проекта «Точка роста»» способствует развитию познавательной активности учащихся; творческого мышления; повышению интереса к информатике, и профориентации в мире профессий.

В результате изучения ученик научится:

• распознавать механические явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений;

- описывать изученные свойства тел и механические явления, используя физические величины; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами;
- анализировать свойства тел, механические явления и процессы, используя физические законы и принципы; при этом различать словесную формулировку закона и его математическое выражение;
- различать основные признаки изученных физических моделей;
- решать задачи, используя физические законы и формулы, на основе анализа условия задачи выделять физические величины и формулы, необходимые для её решения, и проводить расчёты;
- распознавать тепловые явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений;
- описывать изученные свойства тел и тепловые явления, используя физические величины;
- анализировать свойства тел, тепловые явления и процессы, используя закон сохранения энергии; различать словесную формулировку закона и его математическое выражение;
- различать основные признаки моделей строения газов, жидкостей и твёрдых тел;
- решать задачи, используя закон сохранения энергии в тепловых процессах, формулы, связывающие физические величины;
- •распознавать электромагнитные явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений;
- описывать изученные свойства тел и электромагнитные явления, используя физические величины;
- анализировать свойства тел, электромагнитные явления и процессы, используя физические законы: закон сохранения электрического заряда, закон Ома для участка цепи, закон Джоуля—Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света; при этом различать словесную формулировку закона и его математическое выражение;
- решать задачи, используя физические законы (закон Ома для участка цепи, закон Джоуля—Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света) и формулы, связывающие физические величины (сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа тока, мощность тока, фокусное рас- стояние и оптическая сила линзы, формулы расчёта
- электрического сопротивления при последовательном и параллельном соединении проводников); на основе анализа условия задачи выделять физические величины и формулы, необходимые для её решения, и проводить расчёты;
- •объяснять физические явления: прямолинейное распространения света, образование тени и полутени, отражение и преломление света;
- •измерять фокусное расстояние собирающей линзы, оптическую силу линзы;
- •понимать смысл основных физических законов и умение применять их на практике: закон отражения и преломления света, закон прямолинейного распространения света.

Ученик получит возможность научиться:

- использовать знания о механических явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведенияв окружающей среде;
- приводить примеры практического использования физических знаний о механических явлениях и физических законах; использования возобновляемых источников энергии; экологических последствий исследования космического пространства;
- различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов;
- приёмам поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;
- находить адекватную предложенной задаче физическую модель, разрешать проблему на основе имеющихся знаний по механике с использованием математического аппарата, оценивать реальность полученного значения физической величины.
- использовать знания о тепловых явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;
- приводить примеры практического использования физических знаний о тепловых явлениях;
- различать границы применимости физических законов, понимать всеобщий характер фундаментальных физических законов (закон сохранения энергии в тепловых процессах) и ограниченность использования частных законов;
- приёмам поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;
- находить адекватную предложенной задаче физическую модель, разрешать проблему на основе имеющихся знаний о тепловых явлениях с использованием математического аппарата и оценивать реальность полученного значения физической величины.
- использовать знания об электромагнитных явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведенияв окружающей среде;
- приводить примеры практического использования физических знаний о электромагнитных явлениях;
- различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения электрического заряда) и ограниченность использования частных законов (закон Ома для участка цепи, закон Джоуля—Ленца и др.);
- приёмам построения физических моделей, поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;
- находить адекватную предложенной задаче физическую модель, разрешать проблему на основе имеющихся знаний об электромагнитных явлениях с

использованием математического аппарата и оценивать реальность полученного значения физической величины, различать фокус линзы, мнимый фокус и фокусное расстояние линзы, оптическую силу линзы и оптическую ось линзы, собирающую и рассеивающую линзы, изображения, даваемые собирающей и рассеивающей линзой;

- использовать полученные знания, умения и навыки в повседневной жизни, экологии, быту, охране окружающей среды, технике безопасности;
- •выбирать и изготавливать модели.

Формы и виды контроля

Диагностика результатов обучения

Результаты обучения отслеживаются по нескольким направлениям в соответствие с задачами программы. Система мониторинга по результатам диагностики позволяет выявить динамику развития личностных качеств, способностей, мотивации обучающихся.

Мониторинг предусматривает:

- 1. Отслеживание уровня освоения каждым ребенком программы посредством организации аттестации;
- 2. Диагностику личностного развития ребенка в процессе освоения им дополнительной образовательной программы.

Формы аттестации:

- текущая успеваемость;
- диагностические работы;
- проверочные работы после изученной тем: тесты, зачеты, рефераты, творческие работы, доклады

Все формы *промежуточной аттестации* личностных достижений учащихся, характеризующих их успехи в учебной и внеучебной деятельности. Текущая, промежуточная и итоговая аттестация обучающихся производится по 100% системе.

Задания для оценивания результатов носят как тестовый характер, так и приближенный по типу к оценочным заданиям, принятым в вузе: выступления на семинарах, защита работ лабораторного практикума и рефератов и т.д..

При оценивании достижений обучающихся решающее значение придается самостоятельной работе учащихся индивидуального и группового характера, в том числе и деятельности с элементами исследовательского характера. При этом учащийся сам выбирает уровень, на котором он изучает мо- дуль программы и проводит самооценку своих результатов.

Результатами обучения являются: развитие познавательных интересов и творческих способностей на основе опыта приобретения новых знаний. Сознательное самоопределение обучающегося относительно профиля дальнейшего обучения.

Формы подведения итогов реализации дополнительной образовательной программы:

- участие в предметных олимпиадах;
- участие в научно-практических конференциях;
- подготовка и проведение конкурса «Что? Где? Когда?»;
- проведение различного рода конкурсов;
- выполнение ученических проектов;
- участие в «Неделе физики» в своих школах и др.

Форма итоговой аттестации в 9 классе - зачетная работа в форме теста. **Критерии оценивания тестовой работы.**

При оценке ответов учитывается: аккуратность работы, краткое решение тестовых заданий, работа выполнена самостоятельно или с помощью учителя или обучающихся.

Высокий уровень ставится за работу, выполненную практически полностью без ошибок. (90% - 100%)

Средний уровень ставится, если выполнено 50 % - 89 % всей работы. **Низ-кий уровень** ставится, если выполнено, если выполнено менее 50 % всей работы.

По результатам аттестации составляется итоговая таблица за каждый год обучения, которая позволяет проследить общую картину освоения программы вцелом.

$N_{\underline{0}}$	Фамилия	Базовая		милия Базовая Текущая		ая	промежуточна		итоговая	
	Имя			(по	каждом	Я				
					y					
				модулю)						
		дата	уровен	дата	уровен	дата	уровен	дата	уровен	
			Ь		Ь		Ь		Ь	

Раздел 3. Организационно-педагогические условия

3.1. Условия реализации Программы (материально-технические, информационно-методические, кадровые)

Материально-технические условия

```
Занятия проводятся в учебном кабинете.
Оснащение учебного кабинета:
столы — 15 штук;
стулья — 30 штук;
проектор— 1;
компьютер — 1;
экран — 1;
ноутбуков — 5;
медиа-продукты;
лабораторное оборудование;
```

дидактический материал (тематические плакаты, схемы, карточки).

Кадровые условия

Требования к кадрам установлены в соответствии с Приказом Минпросвещения РФ от 09.11.2018 № 196 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам».

Программу реализует педагог, имеющий соответствующее образование и уровень квалификационной подготовки.

Информационно-методические условия

Список использованной литературы

- 1. Моделируем внеурочную деятельность обучающихся. Методические рекомендации: пособие для учителей общеобразоват. организаций/ Ю. Ю. Баранова, А. В. Кисляков, М. И. Солодкова и др. М.: Просвещение, 2013.
- 2. Домашний эксперимент по физике: пособие для учителя/ Ковтунович М. Г. М.: Гуманитар. изд. центр ВЛАДОС, 2007.
- 3. Перышкин А.В. Физика 9. М.: Дрофа, 2016
- 4. Лукашик В.И. Сборник задач по физике. М.: Просвещение, 2010
- 5. Балаш В.А. Задачи по физике и методы их решения. М. Просвещение, 2001
- 6. Манида Н.С. Физика. Решение задач повышенной сложности. Издательство Санкт-Петербургского университета, 2014
- 7. Материалы ФИПИ

Интернет-ресурсы

Авторская мастерская (http://metodist.lbz.ru). Алгоритмы решения задач по физике: festivai.1september.ru/articles/310656